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STATISTICAL ANALYSIS OF MCDM DATA NORMALIZATION 

METHODS USING MONTE CARLO APPROACH. THE CASE OF 

TERNARY ESTIMATES MATRIX 
 

Abstract. One of the most important stages of solving MCDM problems is 

normalization of initial decision-making matrix. The impact of 5 widely used 

normalization methods on the best alternative determination accuracy in the case 
of ternary estimates decision matrix is analysed in the article. Alternatives ranked 

by applying SAW method. Monte Carlo procedure was conducted fordata matrices 

of different dimensions and both optimization directions. Two cases - the more and 
the less separable alternatives- were analysed.None of the 5 methods were the best 

or the worst in all cases. Nevertheless, Minmax method inmost cases is 

significantly better than other. The Log method is the worst in some cases, but it is 

the best (or one of the best) in other cases.The highest values of the best alternative 
detection accuracy were accompanied by the lowest standard deviations of 

experiment results, respectively, the lowest values – by the highest standard 

deviations.  
          Keywords: normalization methods, multi-criteria optimization, Monte Carlo 

method, SAW. 

JEL Classification: D81, C44, C63 

1. Introduction 

Multiple criteria optimization methods are being applied in various fields 
of everyday human activities. Usually we have to solve the task of selection the 

“best” alternative from the finite or infinite set of alternatives when alternatives are 

evaluated according to the few criteria. One of the most important stages of solving 
MCDM problems is normalization of initial decision-making matrix. This 

procedure is necessary because of different units of measurements of different 

criteria. Moreover, because of different normalization directions, distinct formulas 
are being applied for the same normalization method. In this research we will 

examine the impact of various normalization methods on the best alternative 
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determination accuracy. We limited ourselves with discrete optimization problem 

solution. 
Values of the different quantitative or/and qualitative criteria are 

aggregated into single criterion value, which is used for the final ranking of 

alternatives. Such aggregation is possible only for the dimensionless data. 

Unfortunately, researchers often underestimate the importance of the proper 
selection of data normalization method for solving specific decision-making tasks. 

However, normalization techniques have significant impact on the results of 

decision process and can modify the ranking of alternatives and final decision. The 
purpose of this research is to compare the accuracy of ranking results of several 

well known normalization methods applied together with Simple Additive 

Weighting (SAW).  
A comprehensive review of existing normalization methods provided by 

Jahan and Edwards, 2015. The authors identified 31 normalization method and 

distinguished these groups of methods: sum-based, linear-ratio-based, linear max–

min dimensionless methods, nonlinear dimensionless methods (z-transformation, 
etc.) and target-based normalization methods usually applied in medical decision-

making. The main shortcommings of normalization methods were revealed: some 

sum-based methods (such as vector normalization) may depend on the evaluation 
unit (Opricovic and Tzeng, 2004), lack of symmetry in the pair of benefit and cost 

criteria normalization formulas, rank reversal after adding or deleting alternatives, 

unability to handle negative values, also, some non-monotonic normalizations have 

a higher concentration towards the values zero/one. Influence of normalization 
tools on COPRAS-G method applied for material selection task proposed by 

Yazdani et al., 2017. The results show, that depending on the number of criteria 

and number of alternatives material, ranking can be changed when a different 
normalization tools are considered. In Podviezko and Podvezko, 2015 it is shown 

that different types of transformation and normalization of data applied to popular 

MCDA methods, such as SAW or TOPSIS may produce considerable differences 
in evaluation.  In Krylovas et al., 2017 WEBIRA (WEight Balancing Indicator 

Ranks Accordance), SAW and EMDCW (Entropy Method for Determining the 

Criterion Weight) methods were compared for 4 different data normalization 

methods. It was exposed that WEBIRA is the least affected by the data 
normalization, while EMDCW is the most affected method. In Krylovas et al., 

2018 comparative statistical analysis was accomplished for 7 parametric classes of 

normalization functions in the case of Gaussian distribution of decision making 
matrix elements. 

Review of normalization methods used in construction engineering and 

management, and their applications there are presented by Kaplinski and 
Tamošaitienė, 2015. The study of Chakraborty and Yeh, 2009 compares four 

commonly known normalization procedures in terms of their ranking consistency 

and weight sensitivity when used with TOPSIS to solve the general MADM 

problem. The study results justify the use of the vector normalization procedure for 
TOPSIS and provide suggestive insights for using other normalization procedures 

http://www.sciencedirect.com/science/article/pii/S0957417416000658
http://www.sciencedirect.com/science/article/pii/S0957417416000658
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Subrata%20Chakraborty.QT.&newsearch=true
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in certain decision settings. In Zavadskas et al., 2006 transformation through a 

normalization of vectors and the linear transformation were compared for TOPSIS 

method.Research of Celen, 2014 also evaluated the effects of the most popular four 

normalization procedures on decision outcomes of the TOPSIS method evaluating 
the financial performances of 13 Turkish deposit banks. The study revealed that 

vector normalization procedure, which is mostly used in the TOPSIS method by 

default, generated the most consistent results. In Stanujkicand Zavadskas, 2015 a 
specific normalization procedure, which introduces a compensation coefficient that 

better match the decision-maker preferences is proposed.Stanujkicet al., 2017a 

proposed ARCAS approach is based on the use of the ARAS method, a new 
normalization procedure, and the SWARA method. Stanujkic et al., 2017b 

presented the improved Operational Competitiveness Rating (OCRA) method 

where the original normalization procedure has been replaced by a new one. 

The article is organized as follows. Section 2 provides general research 
scheme – 5 normalization methods, two cases of initial data matrices generation 

procedures. A detailed description of Monte Carlo experiments and their results are 

given in the Section 3. Section 4 is devoted to conclusions and plans of the future 
research.  

2. General research scheme 

This research analyses data normalization methods for MCDM tasks when 

the data is generated by randomly simulating alternative ratings on a three-point 

scale. In all cases we calculated how many times the best alternative, for which the 

estimates are generated with predetermined probabilities, was correctly identified. 
Other alternatives have been generated with equal probabilities. The paper deals 

with two cases of estimates matrices. In the Case 1 the best alternative had 

statistically higher estimates, i.e., the probability of an estimate 3 was higher in the 
direct case and the probability of an estimate 1 was higher in the inverse case. In 

the Case 2 the best alternative for both direct and inverse optimization has the 

higher probability of an estimate 2 with equal probabilities of other estimates. So, 

in the Case 1 the best alternative was better distinguished, while in the Case 2 not 
very clearly. Generated matrices weren’t filtered by rejecting a priori weak 

alternatives (do not belonging to the Pareto set of solutions). Such filtering would 

reduce the number of cases when the best alternative was correctly determined. 
However, this research hasn’t the goal to calculate accurately averages of statistical 

estimates. The purpose is to compare efficiency of 5 normalization methods with 

each other.  
Simple Additive Weighting (SAW) method was applied to determine the 

best alternative. Suppose, we have 𝑚alternatives evaluated according to𝑛 criteria 

and decision making matrix is(𝑟𝑖𝑗)𝑚×𝑛. Decision making matrix after 

normalization procedure is(𝑟𝑖�̃�)𝑚×𝑛.  Let  𝑤𝑗 , 𝑗 = 1,2, … , 𝑛be criteria weights, 
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usually evaluated by experts or calculated by objective methods. The best 

alternative has the biggest overall aggregated value𝑄𝑖 = ∑ 𝑤𝑗𝑟𝑖�̃�
𝑛
𝑗=1 . 

The overview of the most often used normalization methods as well as 

normalization formulas is given in the Table 1. Data are normalized by applying 
some monotonic function of initial data matrix elements, which gains its values in 

the interval [0, 1]. If preferable values of criteria are bigger, this function is non-

decreasing (direct normalization), if preferable values are lower – non-increasing 

(inverse normalization). As a result, normalized values of all criteria are benefit 
type, i.e. their greater values are better. 

 

Table 1. Formulas for various normalization methods in the cases of direct      

               and inverse normalization 

Normalization method Direct normalization Inverse normalization 

Vector normalization 
(Van Delft and 

Nijkamp, 1977) 

𝑟𝑖�̃� =
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗2
𝑚
𝑖=1

 𝑟𝑖�̃� = 1 −
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗2
𝑚
𝑖=1

 

Max normalization 
(Stopp, 1975) 

𝑟𝑖�̃� =
𝑟𝑖𝑗

max
1≤𝑖≤𝑚

𝑟𝑖𝑗
 𝑟𝑖�̃� =

min
1≤𝑖≤𝑚

𝑟𝑖𝑗

𝑟𝑖𝑗
 

Sum normalization 

(Wang and Luo, 2010) 
𝑟𝑖�̃� =

𝑟𝑖𝑗
∑ 𝑟𝑖𝑗
𝑚
𝑖=1

 𝑟𝑖�̃� =
(1/𝑟𝑖𝑗)

∑ (1/𝑟𝑖𝑗)
𝑚
𝑖=1

 

Logarithmic 
normalization 

(Zavadskas and 

Turskis, 2008) 

𝑟𝑖�̃� =
ln(𝑟𝑖𝑗)

ln(∏ 𝑟𝑖𝑗
𝑚
𝑖=1 )

 
𝑟𝑖�̃� =

(1 −
ln(𝑟𝑖𝑗)

ln(∏ 𝑟𝑖𝑗
𝑚
𝑖=1 )

)

𝑚 − 1
 

Minmax normalization 

(Weitendorf , 1976) ijr
mi
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mi
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Numerical experiments were carried out by Monte Carlo method. Initial 

decision making matrices randomly generated in two ways – when there are more 

and less separable alternatives. In both cases matrices were generated so, that the 
first alternative has the higher probability of obtaining better values – higher for 

the benefit criteria and lower for the cost criteria. Let values of matrices elements 

be ternary, i.e. they can only get three values – 1, 2, 3. The number of alternatives 
as well as the number of criteria varied from 3 to 5. 

Case 1. This case reflects situation when the alternatives are more separable. 
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Direct optimization. 

𝑚 = 3: alternative1 gains value 3 with probability 𝑝 = 0.9, 0.8, 0.7, 0.6, values 1, 2 

with equal probabilities
1−𝑝

2
.Alternative 2 gains value 2 with probability 𝑝, values 1, 

3 with equal probabilities. Alternative 3 gains value 1 with probability 𝑝, values 2, 

3 with equal probabilities. 

𝑚 = 4: alternatives 1, 2, 4 are generated in the same manner as the alternatives 1, 

2, 3 in the case of 3 alternatives, alternative 3 gains values 1, 2, 3 with equal 

probabilities (1/3). 
𝑚 = 5: alternative 1 is generated in the same manner as the alternative 1, 
alternatives 2 and 3 – as the alternative 2, alternatives 4 and 5 – as the alternative 3 

in the case of 3 alternatives.  

 
Inverse optimization. The random matrix generation process is the same, only 

values 1 and 3 are replaced their places. 

In the Table 2 examples of decision making matrices generated for 𝑛 = 3,𝑝 =
0.8,𝑚 = 3, 4, 5proposed for direct and inverse normalizations. 

 

Table 2. Case 1. Examples of initial decision making matrices in the cases of 

direct and inverse optimization, 𝒏 = 𝟑, 𝒎 = 𝟑,𝟒,𝟓, 𝒑 = 𝟎.𝟖. 

 𝑚 = 3 𝑚 = 4 𝑚 = 5 

Direct 
optimization 

(
3 3 2
2 2 2
1 2 1

) (

2 3 3
2 2 2
2 1 3
1 3 1

) 

(

 
 

3 3 2
1 2 2
2 1 2
1 3 1
1 1 1)

 
 

 

Inverse 

optimization 

 

(
1 1 2
2 2 2
3 3 3

) 

 

(

1 1 1
1 2 2
1 3 1
3 3 2

) 

(

 
 

2 1 1
2 2 2
2 3 2
3 3 3
3 2 3)

 
 

 

 

Case 2.  The case reflects situation when the alternatives are less separable. 

Direct optimization. 

Alternative 1 gains value 2 with probability𝑝 = 0.9, 0.8, 0.7, 0.6, values 1, 3 with 

equal probabilities
1−𝑝

2
. The other alternatives gain value 1 with probability𝑝, values 

2, 3 with equal probabilities. 
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Inverse optimization.  

Alternative 1 gains value 2 with probability𝑝 = 0.9, 0.8, 0.7, 0.6, values 1, 

3 with equal probabilities
1−𝑝

2
. The other alternatives gain value 3 with probability𝑝 

values 1, 2 with equal probabilities.In the Table 3 examples of decision making 

matrices generated for𝑛 = 4,𝑝 = 0.8,𝑚 = 3, 4, 5 proposed for direct and inverse 

normalizations. 

Table 3. Case 2. Examples of initial decision making matrices in the cases of 

direct and inverse optimization, 𝒏 = 𝟒, 𝒎 = 𝟑,𝟒,𝟓, 𝒑 = 𝟎.𝟖. 

 𝑚 = 3 𝑚 = 4 𝑚 = 5 

Direct 
optimization 

(
2 3 2 2
1 1 1 1
1 1 3 1

) 

 

(

1 2 2 3
1 1 3 1
3 3 1 1
1 1 2 1

) 

(

 
 

2 2 2 2
1 1 1 1
1 2 1 1
3 3 1 1
1 1 1 3)

 
 

 

Inverse 

optimization 
(
2 2 2 1
3 3 1 1
3 2 3 3

) (

2 2 2 3
3 1 3 3
1 3 3 3
3 3 3 3

) 

(

 
 

3 2 2 2
1 3 3 3
3 1 3 3
3 3 2 3
3 3 3 3)

 
 

 

3. A detailed description of the numerical experiments  

100 Monte Carlo experiments were conducted for Case 1 and Case 2 and 

for such combinations of initial parameters:𝑚 = 3, 4, 5, 𝑛 = 3, 4, 5, 𝑝 =
0.9, 0.8, 0.7, 0.6 overally 100 series of 144 experiments.In each experiment, 

decision making matrices were generated as described in Section 2, matrices 
elements are normalized in 5 ways according to the formulas given in the Table 1. 

Then SAW method aggregation formula with equal weights applied and values 𝑄𝑖 

calculated for each alternative:𝑄𝑖 = ∑
1

𝑛
�̃�𝑖𝑗

𝑛
𝑗=1 . Finally, alternatives are ranked by 

ascending order of values𝑄𝑖. Each time we fix the result of j-th experiment 𝑅𝑗 , 𝑗 =

1,2, … ,100. 𝑅𝑗 = 1, if the corresponding method detected alternative 1 as the best 

one and 𝑅𝑗 = 0, otherwise.The number of identification of the first alternative as 

the best after 100 experiments is 𝐼𝐷 = ∑ 𝑅𝑗
100
𝑗=1 .𝐼𝐷ist he measure of identification 

accuracy. Our purpose is to compare identification accuracy of5 different 

normalization methods and different parameters 𝑚, 𝑛, 𝑝 values. The other 

calculated value is standard deviation of experiment results 𝑅𝑗  calculated from 100 

Monte Carlo experiments: 

𝑆𝑇𝐷 = √
1

99
∑ (𝑅𝑗 − �̅�)

2100
𝑗=1 , 
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Table 4. Case 1. Numbers of the best alternative detection accuracy(𝑰𝑫)and 

standard deviations of experiment results (𝑺𝑻𝑫)for 5 different normalization 

methods and 𝒑 = 𝟎. 𝟕. 

𝑚 = 3 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Direct 

optimizat

ion 

 ID STD  ID STD  ID STD 

Vector 81 0.419 Vector 83 0.443 Vector 91 0.373 

Max 83 0.388 Max 84 0.435 Max 92 0.362 

Sum 81 0.419 Sum 82 0.449 Sum 91 0.373 

Log 74 0.468 Log 76 0.510 Log 70 0.510 

Minmax 85 0.359 Minmax 86 0.386 Minmax 93 0.307 

Inverse 

optimizat
ion 

 ID STD  ID STD  ID STD 

Vector 80 0.562 Vector 87 0.411 Vector 92 0.321 

Max 81 0.456 Max 87 0.377 Max 93 0.351 

Sum 81 0.484 Sum 89 0.427 Sum 96 0.261 

Log 83 0.443 Log 89 0.458 Log 94 0.339 

Minmax 78 0.525 Minmax 81 0.426 Minmax 88 0.435 

𝑚 = 4 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Direct 

optimizat

ion 

 ID STD  ID STD  ID STD 

Vector 69 0.822 Vector 77 0.734 Vector 79 0.566 

Max 74 0.780 Max 79 0.680 Max 81 0.557 

Sum 70 0.821 Sum 77 0.734 Sum 79 0.566 

Log 58 0.859 Log 65 0.822 Log 66 0.655 

Minmax 75 0.718 Minmax 81 0.674 Minmax 83 0.524 

Inverse 

optimizat

ion 

 ID STD  ID STD  ID STD 

Vector 75 0.702 Vector 80 0.621 Vector 87 0.443 

Max 77 0.697 Max 84 0.492 Max 89 0.314 

Sum 76 0.746 Sum 82 0.548 Sum 87 0.377 

Log 76 0.685 Log 82 0.613 Log 87 0.377 

Minmax 73 0.657 Minmax 77 0.591 Minmax 86 0.420 

𝑚 = 5 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Direct 

optimizat

ion 

 ID STD  ID STD  ID STD 

Vector 73 0.870 Vector 78 0.621 Vector 85 0.705 

Max 74 0.793 Max 82 0.653 Max 87 0.613 

Sum 71 0.834 Sum 77 0.716 Sum 86 0.668 

Log 62 0.925 Log 65 0.834 Log 69 0.835 

Minmax 78 0.772 Minmax 83 0.609 Minmax 84 0.642 

Inverse 

optimizat

ion 

 ID STD  ID STD  ID STD 

Vector 81 0.575 Vector 88 0.705 Vector 87 0.473 

Max 83 0.518 Max 91 0.539 Max 90 0.418 

Sum 80 0.617 Sum 91 0.545 Sum 89 0.427 

Log 85 0.512 Log 90 0.657 Log 88 0.403 

Minmax 77 0.714 Minmax 84 0.653 Minmax 82 0.649 
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here 𝑅 ̅is the average value of random variables 𝑅𝑗 , 𝑗 = 1,2, … ,100. The results of 

100 Monte Carlo experiments calculated for Case 1 presented in the Table 4.  

Analyzing the results of experiments for the Case 1 we can see that for the 

direct optimization, 𝑝 = 0.7and all 𝑛and 𝑚 values considered, the highest percent 

of first alternative identification as the best one was shown by Minmax 
normalization method, meanwhile the lowest percent – by Log method. The only 

exception – for 𝑚 = 5 and 𝑛 = 5 the best is Max normalization. In all mentioned 

cases the highest 𝐼𝐷values were accompanied by the lowest standard deviations of 

experiment results, respectively, the lowest 𝐼𝐷values – by the highest standard 

deviations. 

Experiment results for the inverse optimization did not exhibited such 

clear trend as for the direct optimization. The only sustainable trend is that 

𝐼𝐷values are the lowest for Minmax normalization method for all 𝑛and 𝑚 values. 

For 𝑚 = 3  the best normalization methods are Log and Sum, for 𝑚 = 4 – Max, 

while for 𝑚 = 5 – Log and Max methods.For obtaining more accurate results, we 

performed calculations with different 𝑝values. Calculations performed with 4 

different 𝑝 values 0.9, 0.8, 0.7, 0.6. Lagrange polynomials(Waring, 1779) were 

applied for function𝐼𝐷values interpolation, i.e. calculation of function values in the 

intermediate points. The formula for Lagrange interpolationpolynomial values for 
the case of 4 points is: 

 

𝑓(𝑝) = 𝑓(𝑝1)
(𝑝 − 𝑝2)(𝑝 − 𝑝3)(𝑝 − 𝑝4)

(𝑝1 − 𝑝2)(𝑝1 − 𝑝3)(𝑝1 − 𝑝4)

+ 𝑓(𝑝2)
(𝑝 − 𝑝1)(𝑝 − 𝑝3)(𝑝 − 𝑝4)

(𝑝2 − 𝑝1)(𝑝2 − 𝑝3)(𝑝2 − 𝑝4)
 

+𝑓(𝑝3)
(𝑝 − 𝑝1)(𝑝 − 𝑝2)(𝑝 − 𝑝4)

(𝑝3 − 𝑝1)(𝑝3 − 𝑝2)(𝑝3 − 𝑝4)
+ 𝑓(𝑝4)

(𝑝 − 𝑝1)(𝑝 − 𝑝2)(𝑝 − 𝑝3)

(𝑝4 − 𝑝1)(𝑝4 − 𝑝2)(𝑝4 − 𝑝3)
. 

 

Variation dynamics of 𝐼𝐷 depending on the probability 𝑝 values for the 
direct optimization in Case 1 is reflected in Figure 1. The trend that the lowest 

𝐼𝐷values acquired in the case of Log normalization method remains very strong, 

while the highest 𝐼𝐷values most commonly obtained with Minmax and Max 

normalization.  In Figure 2 dependency of 𝐼𝐷 on the probability 𝑝 values for the 

inverse optimization is depicted. On the contrary, in most cases the lowest 

𝐼𝐷 values acquired for Minmax normalization method. The highest 𝐼𝐷 values 

generally reached for Max and Log methods, but this trend is not predominant. 
The same calculations were performed for the Case 2 when alternatives are 

less separable,𝑝 = 0.7,𝑚 = 3, 4, 5. Monte Carlo experiment results for the Case 2 

presented in the Table 5.  For the direct optimization one trend is obvious – the 

highest number of correct detections of the best alternative is observed for Log and 
Minmax normalization methods, the lowest – for Sum and Max normalizations.  

The lowest values of standard deviation (STD) also correspond the most accurate 

normalization methods Log and Minmax, the highest STD values most often are in 
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the cases of Sum and Max normalizations. Inverse optimization has sustainable 

trend of being Minmax the most accurate normalization method and as a rule (with 

only one exception) Log is the least accurate normalization method. The least STD 
values go with Minmax normalization. 

Dynamics of 𝐼𝐷depending on the probability 𝑝values for the direct 

optimization in the Case 2 is depicted in Figure 3, for the inverse optimization – in 
the Figure 4. The assumption that Minmax and Log normalizations are the most 

exact for the Case 2 and direct optimization has been confirmed. For inverse 

optimization the most accurate results are always for Minmax normalization, 

meanwhile the least precise results obtained for Log and Sum normalization 
methods. 

4. Conclusions and future research 

The purpose of this article is to ascertain how various data normalization 

methods affect the accuracy of MCDM problem solution. In this research 5 data 

normalization methods were compared with each other for the solution of MCDM 
problems of different dimensions and different optimization directions. Case 1, 

when the alternatives are more separable and Case 2, with the less separable 

alternatives, were considered. For these cases different scenarios of data matrices 

random generation were adjusted. In all conducted Monte Carlo experiments 
decision making matrices were generated with the first alternative as the best one 

with correspondent probabilitiy𝑝 = 0.9, 0.8, 0.7, 0.6. Then the alternatives were 

ranked by the SAW method overall aggregated value with equal weights. The 

measure of identification accuracy 𝐼𝐷 is the number of identifications of the first 

alternative as the best one in 100 experiments, i.e. the percentage of correct 

identifications. Sustainable trends revealed during the experiment are as follows. 

Case 1. Direct optimization. The lowest 𝐼𝐷values obtainedfor the Log 
normalization.   

Case 1. Inverse optimization. In most cases the lowest 𝐼𝐷values obtained for 

the Minmax normalization.   

Case 2. Direct optimization. The highest 𝐼𝐷values detected for the Log and 

Minmax normalizations.   

Case 2. Inverse optimization. The highest 𝐼𝐷values were reached for Minmax 

normalization, the lowest – for Log and Sum normalization methods. 
 

There were not quite clear tendencies. None of the 5 methods are the best 

or the worst in all cases. Minmax method in some cases (direct optimization, Case 

1, 𝑚 = 3, 4) is significantly better than other. However, in some cases it is the 

worst. The Log method is the worst in some cases (Figure 1), but it is the best (or 

one of the best) in other cases (Figure 2). In some situations efficiency of 5 

methods.  
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Figure 1. Case 1. Direct optimization. Dependency of detection accuracy (𝑰𝑫)  
on 𝒑 values and normalization method 𝒎 = 𝟑, 𝟒,𝟓, 𝒏 = 𝟑,𝟓. 
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Figure 2. Case 1. Inverse optimization. Dependency of detection accuracy 

(𝑰𝑫)  on 𝒑 values and normalization method 𝒎 = 𝟑,𝟒,𝟓, 𝒏 = 𝟑,𝟓. 

 



 

 

 

 

 

 

Statistical Analysis of MCDM Data Normalization Methods Using Monte Carlo 
Approach. The Case of Ternary Estimates Matrix 

 

171 

 
 

Table 5. Case 2. Numbers of the best alternative detection accuracy (𝑰𝑫)and 

standard deviations of experiment rezults (𝑺𝑻𝑫)for 5 different normalization 

methods and 𝒑 = 𝟎. 𝟕. 

𝑚 = 3 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Direct 

optimization 

 ID STD  ID STD  ID STD 

Vector 78 0.548 Vector 82 0.386 Vector 90 0.345 

Max 75 0.514 Max 85 0.359 Max 89 0.356 

Sum 76 0.556 Sum 82 0.419 Sum 89 0.356 

Log 89 0.458 Log 90 0.302 Log 93 0.351 

Minmax 81 0.510 Minmax 87 0.338 Minmax 91 0.333 

Inverse 

optimization 

         

Vector 72 0.570 Vector 74 0.563 Vector 83 0.471 

Max 74 0.563 Max 76 0.556 Max 82 0.449 

Sum 66 0.638 Sum 70 0.632 Sum 76 0.533 

Log 54 0.699 Log 62 0.704 Log 71 0.648 

Minmax 92 0.273 Minmax 88 0.435 Minmax 93 0.351 

𝑚 = 4 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Direct 

optimization 

 ID STD  ID STD  ID STD 

Vector 78 0.548 Vector 79 0.515 Vector 87 0.411 

Max 75 0.514 Max 80 0.534 Max 85 0.428 

Sum 76 0.556 Sum 78 0.520 Sum 87 0.411 

Log 89 0.458 Log 90 0.383 Log 93 0.256 

Minmax 81 0.510 Minmax 89 0.356 Minmax 91 0.333 

Inverse 

optimization 

 ID STD  ID STD  ID STD 

Vector 57 0.755 Vector 74 0.541 Vector 75 0.598 

Max 55 0.800 Max 72 0.626 Max 72 0.626 

Sum 44 0.811 Sum 57 0.716 Sum 63 0.624 

Log 44 0.877 Log 53 0.817 Log 57 0.793 

Minmax 79 0.562 Minmax 89 0.356 Minmax 91 0.433 

𝑚 = 5 𝑛 = 3 𝑛 = 4 𝑛 = 5 

Direct 

optimization 

 ID STD  ID STD  ID STD 

Vector 68 0.728 Vector 72 0.659 Vector 79 0.640 

Max 71 0.661 Max 77 0.591 Max 77 0.548 

Sum 68 0.699 Sum 71 0.661 Sum 77 0.647 

Log 78 0.587 Log 83 0.543 Log 87 0.526 

Minmax 80 0.597 Minmax 85 0.506 Minmax 88 0.403 

Inverse 

optimization 

 ID STD  ID STD  ID STD 

Vector 61 0.856 Vector 59 0.842 Vector 65 0.671 

Max 61 0.990 Max 61 0.948 Max 55 0.801 

Sum 44 1.053 Sum 47 1.014 Sum 49 0.830 

Log 51 1.058 Log 42 1.010 Log 45 0.947 

Minmax 75 0.634 Minmax 82 0.524 Minmax 86 0.420 
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Figure 3. Case 2. Direct optimization. Dependency of detection accuracy (𝑰𝑫)  
on 𝒑 values and normalization method 𝒎 = 𝟑, 𝟒,𝟓, 𝒏 = 𝟑, 𝟓. 
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Figure 4. Case 2. Inverse optimization. Dependency of detection accuracy (𝑰𝑫)  
on 𝒑 values and normalization method 𝒎 = 𝟑, 𝟒,𝟓, 𝒏 = 𝟑, 𝟓. 
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significantly differ (Figure 4), meanwhile in other cases their efficienciy is very 

similar. In most cases the highest 𝐼𝐷values were accompanied by the lowest 

standard deviations of experiment results, respectively, the lowest 𝐼𝐷values – by 

the highest standard deviations. All results were received dealing with ternary 
estimates matrices and two cases of their probability distributions. So, the 

conclusions are preliminary and do not allow to formulate practical 

recommendations. A more precise establishing of generated matrices would allow 

the formulation of such recommendations. This requires additional research that is 
planned for the future.  
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